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Pressure weighted upwinding for �ow induced force
predictions: application to iced surfaces
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SUMMARY

This paper addresses two main topics, namely the development of a pressure-weighted upwinding method
and its application to �ow induced forces on iced cylinders. Although the near-wall convective up-
winding exhibits special applicability to iced surfaces, its capabilities extend more generally to other
applications. By fully linking pressure and velocity at a sub-element level near the wall, a higher or-
der accuracy can be obtained. Also, a non-physical de-coupling between pressure and velocity can be
prevented. The method is developed under the context of a control-volume-based �nite element method
for 2-D, incompressible �ows. Drag and lift coe�cients are predicted, based on the pressure weighted
upwinding near the wall. The numerical predictions are successfully compared against experimental
data, including �ow induced forces on iced cables. ? 2004 John Wiley & Sons, Ltd.

KEY WORDS: upwinding; �ow-induced forces; CFD: convection modelling; control-volume based
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1. INTRODUCTION

Accurate predictionm of �ow induced forces on objects, such as iced power lines or aircraft
surfaces, is an important concern for design purposes. For example, dynamic forces caused
by icing of overhead power lines can lead to large �nancial losses associated with various
hardware damage, and possibly human injury and death due to interruption of a power supply.
Although lighter icing occurs more frequently than extreme icing, the shape of a lightly iced
cable may cause it to behave like an airfoil in a side wind. The resulting aerodynamic loads
may produce unstable �ow-induced line vibrations (called galloping), whereby the resulting
dynamic line and tower forces become much greater than forces produced by the static ice
weight alone. These �ow-induced scenarios are recognized in the Canadian Electrical Code [1],
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but detailed variations due to changing ice shape are not well understood. The purpose of
this article is to consider a pressure based convective upwinding in the near-wall region, for
more accurate predictions of the �ow induced forces on a surface.
In recent decades, the rapid progress of CFD (Computational Fluid Dynamics) has provided

an e�ective design tool for engineering problems, particularly in problems where experimental
testing is too time-consuming or expensive. Numerical methods for CFD are typically based
on �nite elements [2] �nite volumes [3] or combined elements=volumes [4]. Complete ge-
ometric �exibility is achieved with �nite elements, thereby allowing unstructured grids and
local elemental equations to be developed independently of the mesh con�guration. Galerkin
weighted residuals may be used in deriving these discrete equations [5]. In the case of �nite
volume methods, balances of conserved quantities over discrete volumes are applied.
Interpolation methods for predicting the convective �uxes at the edges of these volumes,

such as exponential and upwind di�erencing, have been described by Patankar [3]. Schneider
and Raw [6, FIELDS] extend single variable interpolations to coupled pressure=velocity �elds
at the midpoint of the volume edges. In PAC (physical advection correction), a correction term
is added to the upstream value predicted by UDS, in order to improve the upwinding accuracy.
A grid upstream scheme with PAC is documented by Wong and Raithby [7]. Van Doormaal
et al. [8] suggest that numerical oscillations can arise with PAC in grid upstream schemes
when advection terms are dominant, due to large variations of the advective components of
the PAC term. Furthermore, Lillington [9] has documented the need to include the e�ect of
the local pressure gradient in the evaluation of the PAC correction term.
In physical in�uence schemes (PINS) [10], a methodology of incorporating the Second

Law locally is considered, particularly so that upstream di�erencing in the convection mod-
elling complies with the Second Law. This methodology represents extensions of FIELDS
to accommodate the requirements imposed by the Second Law in the upstream di�erencing.
Convergence acceleration with higher order accuracy of the upstream interpolation is docu-
mented by Leonard [11], based on a method called QUICK. Hutchinson and Raithby [12]
outline a multigrid algorithm for convergence acceleration, whereby coarse and �ne grids are
used together to reduce the discretization errors. These methods of reducing solution errors,
particularly involving convection, have special signi�cance when predicting more complex
phenomena such as multiphase �ows with droplets, icing and phase change. Such examples
involving aircraft icing are documented by Cebeci et al. [13], Hedde and Gu�ond [14] and
Shin et al. [15].
An important application where CFD can provide useful insight is external �ows, such as

�ows past overhead power lines. In this example, numerical simulations can be used to predict
the wind forces on the power line, in addition to ice loads arising from atmospheric icing.
Although CFD technology serves as a key tool in the aerodynamics of aircraft design, less
attention has been given to its potential bene�ts in power transmission applications. Various
di�erences distinguish the needs of power line icing calculations from other methods, thereby
requiring special consideration of the near-wall convection modelling. For example, power
line icing usually occurs during freezing precipitation with relatively large droplets (up to
1 mm diameter) and low wind speeds (up to about 10 m=s). However, aircraft icing typically
entails much smaller droplets (about 10–30�m) and higher air speeds (usually above 45m=s).
Larger droplets impart more latent energy across the convective boundary layer when freezing
on impact. Also, lower air speeds have less inertia (relative to the droplets) when de�ecting
droplets away from the ice surface before impact. Since many aspects of the icing predictions
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depend on the near-wall convection modelling, the method of convective upwinding with
sub-element pressure=velocity links has large signi�cance in icing problems.
Fluid dynamics and computational predictions of �ows past blu� bodies, such as cylinder

type bodies, have been widely studied in the technical literature. At su�ciently low air veloc-
ities past a circular cylinder, the boundary layer remains laminar [16]. Delayed separation of
the boundary layer from the surface occurs at higher Reynolds numbers [17], i.e. Re¿3× 105
(where Re=VD=� and V , D and � refer to the air velocity, diameter and kinematic viscosity
of air, respectively). Flow induced vibrations, due to time varying lift coe�cients, further
alter the structure of vortex shedding in the downstream wake [18].
When predicting such �uid motion, conventional error estimation is often based on Taylor

series methods [5]. Naterer and Rinn [19] develop a useful alternative to these conventional
error indicators using a weighted entropy residual. This method overcomes certain di�culties
of Taylor series methods, particularly involving evaluation of higher order derivatives and
constants in the error indicators. Reducing solution errors in the near-wall velocity and pressure
distributions has signi�cance when predicting the drag and lift forces on the object. The
�uid=structure interactions are derived from these forces. In this article, the �uid and structure
will refer to the air �ow and cable (uniced and iced), respectively, although the method is
more generally applicable to other geometries and applications.
Despite many past �uid dynamic studies involving circular cylinders, a wide variety of other

cylinder type con�gurations, such as D-shaped cylinders, has received less attention. These
con�gurations can occur during certain conditions of atmospheric icing of overhead power
lines. In particular, elliptical, D-shaped and other oval type conductor shapes are encountered
due to surface icing. Numerical simulations with CFD o�er a useful tool for better understand-
ing of �ow induced forces on these types of surfaces. For example, they can shed new light
on �ow conditions leading to vibration galloping [20], when CFD includes the detailed e�ects
of multiphase �ow, impinging droplets and ice buildup on cables. Such vibrations are derived
by forces involving shear stress and pressure calculations along the surface. Once calculated,
these distributions are integrated around the iced surface to determine the aerodynamic force
coe�cient (i.e. cd or cl).
Although previous studies have modelled the surface shear stress analytically (i.e. Ref. [21]),

extensions to more complex shapes of iced cables by CFD are investigated in this article.
Unlike various past schemes for convective upwinding (i.e. UDS, EDS [3]), the current method
links pressure with convective velocities at a sub-element level. Bene�ts of this approach
are discussed in this article, particularly how they relate to the accuracy of the predicted
�ow induced forces on the surface. For example, higher order accuracy can be derived by
pressure weighted upwinding, while retaining a physically based coupling between velocity
and pressure. Furthermore, wind tunnel testing is used to gather experimental data for physical
understanding and validation of the �nite element studies. It is anticipated that these studies
can provide useful new information regarding drag and lift forces due to ice buildup on
surfaces. Although the application problems investigate iced cables, the numerical method can
be applied to other iced surfaces, such as iced aircraft surfaces.

2. PROBLEM FORMULATION

The problem formulation involves a description of the governing equations, and discretization
of the solution domain and governing equations.
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2.1. Governing equations

The general 2-D conservation equation for a scalar quantity, �, may be written as

�
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where jx; jy and Ŝ refer to the di�usive �ux components and source term, respectively. In
the case of momentum transport, the di�usive �ux vector, j, refers to stress tensor (including
pressure), whereas it refers to the heat �ux in the case of energy transport. In the mass
and momentum equations for an incompressible Newtonian �uid (such as air), the following
continuity and Navier–Stokes equations are obtained:
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where v=(u; v) is the velocity �eld, � is the dynamic viscosity and p is the kinematic pressure.
After appropriate initial and boundary conditions are speci�ed, Equations (2)–(4) can be
solved to �nd the velocity and pressure �elds. In icing problems, simultaneous predictions of
ice growth involve the heat transfer and multiphase �ow equations [22].

2.2. Numerical discretization

The numerical solution requires discretization of the problem domain, as well as the governing
equations. In this section, the method of spatial discretization is based on a CVFEM (control-
volume-based �nite element method). The CVFEM combines the geometric �exibility of the
�nite element method with the important conservation based properties (i.e. enforcement of
mass, energy conservation) of the �nite volume procedure. In the upcoming sections, the
bene�ts of this method in regards to sub-element convective modelling will be described,
particularly its role in predicting the �ow induced forces on a surface.
The solution domain is sub-divided into an assembly of quadrilateral isoparametric ele-

ments. Each �nite element is further subdivided into a set of sub-control-volumes (SCVs;
see Figure 1). Then, after assembly of all elements, a �nite volume is established by all
sub-volumes associated with a particular node. Local co-ordinates, s and t, are used within
each element. Integration points (ip) are de�ned at the midpoint of each sub-surface (SS) in
order to evaluate the surface �ux terms, such as the mass or momentum �ux, in the control
volume equations.
Then, bilinear shape functions are used for global=local co-ordinate transformations and

the interpolation of scalar values in the domain. For example, the value of a general scalar
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Figure 1. Finite element=volume discretization with sub-element interpolation.

quantity, �, at the local co-ordinate, (s; t), is approximated by

�(s; t)=
4∑
i=1
Ni(s; t)�i (5)

where the shape functions, Ni, are given by

N1(s; t) = 1
4(1 + s)(1 + t)

N2(s; t) = 1
4(1− s)(1 + t)

N3(s; t) = 1
4(1− s)(1− t)

N4(s; t) = 1
4(1 + s)(1− t) (6)

The subscripts i = 1; 2; 3 and 4 refer to local nodes. Based on these shape functions, all
interpolated values of the scalar and their derivatives may be obtained. In Equation (5), it
should be noted that t refers to the local co-ordinate outlined in Figure 1, not time.
The discrete form of the governing equations may be obtained by integration of the general

scalar conservation equation, i.e. Equation (1), over a discrete volume, with the result that
∫
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(7)

where dn is the unit normal vector. Also, integrations over A and S refer to the area and
surface of the 2-D control volume, respectively. An implicit formulation is adopted, whereby
the convection, di�usion and source terms are evaluated at the current time level (denoted by
superscript n+ 1), rather than the previous time level (superscript n; explicit approach).
Linearization of the convection and source terms is required in Equation (7). Velocities at

the previous iteration, or previous time step values before the �rst iteration at the beginning of
a new time step, are used in this regard. These velocities are called the ‘linearized’ or ‘lagged’
velocities. A combination of the newly solved velocity and the value from the previous
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iteration at a given node is used, based on a relaxation factor of 0.5. Similarly, values from
the previous iteration with a lumped approximation are used for linearization of the source
term on the right side of Equation (7). In the lumped approximation, a piecewise constant
distribution based on the nodal value is used to �nd the spatially averaged source term. Also,
a backward di�erence in time is used when approximating the �rst term of Equation (7). The
di�usive �ux, j, is typically expressed in terms of the gradient of the scalar (i.e. Fourier’s
Law), so bilinear interpolation with the shape functions can be used for discretizing the third
term in Equation (7).
With reference to SCV1 (see Figure 1), the convective term in Equation (7) will require

evaluation at both SS1 and SS4 sub-surfaces since both surfaces contribute to the convective
transport of � for the SCV1 conservation equation. In the case of the SS1 evaluation, we
have

∫
SS1
(��v) · dn ≈ (��u)n+1ip1 �y1 − (��v)n+1ip1 �x1 (8)

The values �x1 and �y1 refer to lengths associated with SS1 (see Figure 1). A similar
expression is obtained for the SS4 integration. As mentioned previously, the superscript n+1
in Equation (8) refers to the current time step.
Since an implicit formulation is used, inter-equation iterations involving the conservation

equations for mass and momentum (i.e. �= u or v) are required to handle the non-linear con-
vective term in Equation (8). For example, in the momentum equation, the convective term
in Equation (8) involves a ‘convected’ (linearized or lagged) velocity multiplied by a ‘con-
vecting’ velocity (to be discussed hereafter). The sub-iteration strategy �rst solves the �ow
equations based on the linearized velocities, and then compares the newly predicted velocities
with the convected velocities in the linearized convection terms. Unless the summed di�er-
ence between these velocities over the problem domain falls below a speci�ed convergence
tolerance (non-dimensional value of 0.001 in the current study), the convected velocity is
updated and the procedure is repeated. Otherwise, the results are considered to be convergent
and the solution can proceed to the next time step. When the convected velocity is updated,
a relaxation factor of 0.5 is applied, so that an equal combination of newly predicted and
previously linearized velocities are used in the next iteration.
Initial and boundary conditions are required for closure of the formulation. In particular,

boundary conditions for velocity and pressure are required. The velocity components may be
speci�ed at inlets, outlets and walls. However, outlet �ow conditions may be unknown in
certain cases. If little or no streamwise changes in velocity are expected in such cases, then a
zero gradient of velocity can be imposed at the outlet boundary. In these cases, the momentum
equations at boundary nodes are replaced by the velocity speci�cations. Furthermore, the
velocity conditions are used for calculating boundary mass �ows in the closure of the boundary
control volume equations for mass conservation. If the �ow rate or expected velocity gradients
at the boundaries are unknown, but the pressure drop across the domain is known, then
pressure boundary conditions can be applied. The continuity equation is replaced by such
pressure conditions. Pressure boundary conditions are particularly useful in internal �ows,
such as problems with �ows exiting the domain at more than one location. In any case, at
least one reference pressure must be speci�ed at a node within the domain, in order to ensure
a unique solution of the momentum equations.
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For example, consider the numerical implementation of boundary conditions for an external
�ow past an iced conductor. This article focuses on this type of problem. Su�cient distance
from the outlet and top=bottom edges of the domain to the conductor are required for zero
gradient conditions on those boundaries. The momentum equations are replaced by conditions
specifying that the boundary velocities are equal to their adjacent nodal values perpendicular
to the boundary nodes. The control volume equations for mass conservation at the boundary
nodes are completed after adding the mass out�ows. The outlet condition could be imposed so
that any errors in this speci�cation will not propagate upstream. A zero streamwise gradient
is often mild enough to permit the computations to proceed, although subsequent re�nements
in the grid layout may be required to establish that the solution results are independent of
the outlet location and boundary conditions. At the inlet and conductor boundaries, speci�ed
velocity conditions are applied. In this case, the momentum equations are replaced by �xed
values of velocity, while the known mass �uxes are used for closure of the control volume
equations for mass conservation.

3. NUMERICAL FORMULATION OF FLOW INDUCED FORCES

In this section, the method of calculating the �ow induced forces, as well as its pressure
based upwinding and order accuracy, will be described.

3.1. Computation of drag and lift coe�cients

After the solutions of the Navier–Stokes equations are obtained, the aerodynamic forces and
coe�cients (cd ; cl) are often needed. In two-dimensional problems, the wall shear stress for
Newtonian �uids is obtained from the following constitutive relation:

�xy= �yx=�
(
@u
@y
+
@v
@x

)
(9)

where evaluation at the wall is performed to compute the wall shear stress. In the current �nite
element formulation, grid re�nement is performed in the boundary layer region to accurately
predict the velocity pro�le near the wall.
Once the near-wall velocity predictions are obtained, the wall shear stress, �w, is approxi-

mated based on the shape functions and Equation (9) as follows:

�w ≈ �
4∑
i=1

@Ni
@y

Ui + �
4∑
i=1

@Ni
@x

Vi (10)

where Ui and Vi refer to nodal velocities at local node i. The shape functions, Ni, are
evaluated within the boundary element at the local node co-ordinates corresponding to the
node on the physical boundary. Then, integration of this wall shear stress, by summation of
the integrated boundary terms along the entire surface area of the object, yields the frictional
drag force.
In addition to these frictional forces, pressure drag arises due to pressure on the object.

The total drag force, D, is the sum of the friction and pressure drag. In �uid �ow past
a blu� body at high Reynolds numbers, separation of the boundary layer from the surface
largely contributes to the pressure drag. In the present studies, the pressure drag is obtained
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Figure 2. Pressure and shear forces on an arbitrary curved surface.

in a similar manner as the frictional drag, whereby the appropriate component of pressure
is integrated along the surface area. This pressure component refers to the component of the
pressure force, p dA, acting normal to the boundary element area, dA, in the direction of the
upstream velocity (see Figure 2). For example, in the case of a �uid �ow past a curved body
in Figure 2, or more speci�cally, a discretized linear surface element along this body, the
drag force, D, is computed from

D=
∫
A
p cos(�) dA+

∫
A
�w sin(�) dA (11)

where

cos(�)=
�y

(�x2 + �y2)1=2
(12)

sin(�)=
�x

(�x2 + �y2)1=2
(13)

When computing the drag and lift forces, the pressure and shear stress are evaluated at the
nodes along the physical boundary. For example, the area integrals in Equation (11) are
subdivided into discrete parts representing the edges of boundary control volumes along the
iced surface. The nodal pressure is multiplied by this surface area and cos(�), while the shear
stress term requires velocities at surrounding nodes, as outlined in Equation (10).
Once the pressure and frictional drag forces are combined, the drag coe�cient is

obtained as

cd =
D

(1=2)�V 2A
(14)

where V is the total velocity magnitude of the freestream �uid. In a similar way, the lift
force, L, and lift coe�cient, cl, are computed from

L=−
∫
A
p sin(�) dA+

∫
A
�w cos(�) dA (15)
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cl =
L

(1=2)�V 2A
(16)

In this case, the resultant lift force, L, is taken to be normal to the upstream velocity.
The skin friction drag represents the drag force on the body due to viscous shear stresses

over the surface. On the other hand, pressure drag (or form drag) occurs due to the static
pressure distribution around the body, acting in the direction of motion. It can be subdivided
into forebody and rear (base) drag components. The relative contribution of friction and
pressure drag largely depends on the shape of the surface. As the body thickness increases,
the percentage of friction drag decreases. For example, for a thin �at plate, the drag force is
100% friction drag. But for a circular cylinder, the thickness is equal to the chord length and
the friction drag is only about 3%, while the remaining 97% is pressure drag. Pressure drag
largely involves �ow separation, which mainly occurs on the downstream side of the iced
and uniced conductors, so the drag and lift coe�cients are considered to be dominated by
base drag. Also, the magnitude of the pressure drag changes with Reynolds number, when the
size of the low pressure wake region is reduced. For example, the pressure drag and resulting
drag coe�cient decrease due to delayed separation of the boundary layer and a narrower
downstream wake for turbulent �ow.
In view of the importance of base drag, the accuracy of the near-wall pressure �eld is sig-

ni�cant when predicting the drag and lift coe�cients. This observation emphasizes a primary
purpose of this article to describe a more accurate pressure=velocity coupling through convec-
tion modelling when predicting those coe�cients. Unlike previous upwind methods based on
single variable interpolation (such as the upwind di�erencing scheme (UDS); see Appendix
A), the next sub-section will outline a sub-element multi-variable link between pressure and
velocity. This method is based on pressure weighted upwinding at the integration point. In
this way, non-physical decouplings between problem variables can be prevented, such as a
sudden near-wall pressure change having little or no e�ect on nearby velocities when the
upwind interpolation excludes such links.

3.2. Pressure weighted upwinding in near-wall convection modelling

As indicated in the previous section, the numerical model requires accurate predictions of
pressure and velocity near the wall when calculating the drag and lift forces. In this section,
a procedure is outlined for the near-wall pressure=velocity coupling when predicting these
forces, based on Schneider and Raw [6] and later extended to multiphase �ows with droplets
by Naterer [23]. Such extensions require separate evaluation of the upwind coe�cients for
the dispersed (droplet) and carrier (air) phases, as well as additional terms involving cross-
phase interactions such as the interfacial drag between droplets and air. Freezing of impinging
droplets on the surface establishes the shape of the iced cable, so convection modelling of
both droplets and air have direct relevance to the cable drag problem.
Unlike conventional methods, which typically lack a pressure weighting in the convective

upwinding (such as UDS [3]), the current approach includes all relevant physical mechanisms
when calculating the upwinded velocities locally. In this way, a de-coupling of problem vari-
ables leading to the checkerboard problem [3] would not occur. The pressure weighted up-
winding precludes a de-coupling between the integration point and nodal pressures leading to
such problems, without requiring staggered grids. Also, it will be shown that this capability
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can provide higher accuracy, in terms of integration point variables (see Appendix A) and
predictions of the �ow induced forces on iced surfaces (Section 3.3).
The control volume equation in Equation (7) is completed after all elements are assembled,

since all sub-control-volume contributions to a conservation equation for a particular global
node must be considered. However, it remains that the integration point values, such as
integration point velocities, ûip1 and v̂ip1 in Equation (8), still have to be related to nodal
variables, such as U1, V1 and P1, in order to provide a well-posed algebraic system. Both
convecting and convected velocities are constructed in the same manner for the integration
point velocities. However, as discussed earlier, linearized values from a previous iteration are
used for the convected velocities, while the convecting velocities are active variables to be
solved simultaneously in the mass and momentum equations. The following methods represent
conventional methods for estimating û and v̂ at the integration points.
UDS (upwind di�erencing scheme). The UDS approximation is ûip1 = uu (at upstream point;

see Figure 1). When the local �ow direction is used to determine the upstream location, the
method is also called the skew upwind di�erencing scheme (SUDS). This �rst-order upwinding
neglects the in�uence of nodal pressure on the integration point velocity, which may lead to the
non-physical de-coupling between problem variables. For example, a large pressure gradient
between the upstream and integration points should a�ect the velocity �eld therein, but UDS
does not include such connections with pressure.
CDS (central di�erencing scheme). In this scheme, linear interpolation between adjacent

nodal values is used to calculate the integration point variable [3]. For example, in 1-D
modelling of a general scalar quantity �, this implies that �i+1=2 = (�i+�i+1)=2, where i, i+1
and i + 1=2 refer to the west node, east node and integration point, respectively. In addition
to neglecting pressure (as discussed for UDS), this method places an equal weighting on the
downstream value, which lacks a physical basis, particularly for highly convective �ows.
Hybrid schemes. Combinations of UDS, CDS and other schemes are called hybrid schemes.

For example, the exponential di�erencing scheme (EDS) provides a balance between UDS
and CDS based on the local grid Peclet number (Pe=�Ui�xi=�, where � refers to a di�usion
coe�cient). This scheme gives a smooth transition from CDS in the di�usion limit (Pe→ 0)
to UDS as Pe→∞. Other hybrid schemes can provide higher order accuracy, i.e. QUICK
(quadratic upstream interpolation for convection kinetics; [11]). Unlike these methods, this
article focuses on an alternative hybrid scheme based on pressure weighted upwinding (called
PINS), which will be shown to have certain bene�ts when applied to �ow induced force
calculations.
As described earlier, the integration point value of ûip is required for closure of the control

volume equation, since it is needed in the convection term of Equation (8). In the cur-
rent approach, the integration point velocities are determined from a local balance of trans-
port processes, including pressure, convection and di�usion. In particular, these velocities are
obtained from the transport forms of the momentum equations, corresponding to Equations
(3)–(4). In the x and y directions, respectively,

�
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It can be observed that these equations involve �ve distinct operators: transient (�rst term),
convection (second and third terms), pressure (fourth term), di�usion (�fth and sixth terms)
and source terms (seventh term). The solution for each integration point velocity is obtained
by a suitable discrete approximation of each of these operators. Then, once these operators are
assembled together, the integration point values can be found in terms of nodal variables, and
then substituted back into the control volume equations to obtain an algebraic system for the
nodal variables alone. This type of change to nodal variables is also made in the conventional
upwinding schemes, such as UDS, but without a multi-variable dependence including pressure.
For Equations (17)–(18), the transient term at the integration point is approximated by a

backward di�erence. For example, at integration point 1,

@û
@t

∣∣∣∣
ip1

≈ ûn+1ip1 − ûnip1
�t

(19)

where the superscripts n+ 1 and n denote current and previous time levels, respectively.
The convection operator in Equation (17) at ip1 is approximated by an upstream di�erence

as follows:

�u
@u
@x
+ �v

@u
@y
=�V

(
@u
@m

)
≈ �V

(
ûip1 − uu
Lc

)
(20)

where V =
√
u2 + v2 and m represent the �uid velocity magnitude and the local streamwise

direction, respectively. Also, Lc is the convection length scale and uu represents the upwind
value of ûip (see Figure 1). The direction of the line between ûip1 and uu is de�ned by the local
velocity components at these locations. Skew upwinding is used in the current scheme, so that
the upstream value, uu, is calculated by an interpolation upstream to the sub-volume edge,
where the local streamline through the integration point intersects that edge. For example, if
the line segment in the upwind direction intersects the quadrant edge between local nodes 2
and 3 (as in Figure 1),

uu ≈ a
b
U2 +

(
1− a

b

)
U3 (21)

where the uppercase U denotes nodal values. The values a and b refer to coe�cients cor-
responding to linear interpolation for uu in terms of U2 and U3 along the intersected edge.
This skew upwinding retains both the directional and strength in�uences of convection at
the integration point. Skew upwinding errors due to upstream di�erencing are reduced, when
compared to non-skewed schemes [24].
A novel feature of this hybrid scheme is the pressure weighting on ûip and v̂ip through

Equations (17)–(18). In those equations, an approximation to the local pressure gradient is
required. Shape functions are used for the following local interpolation, i.e. at ip1 for the x
direction,

@p
@x

∣∣∣∣
ip1
=

4∑
i=1

@Ni
@x

Pi (22)

where the uppercase Pi refers to nodal values of pressure. The pressure gradient in the y
direction can be constructed in a similar fashion.
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In Equations (17)–(18), the di�usion (Laplacian) operator is approximated by a central
di�erence, i.e.

@2u
@x2

+
@2u
@y2

∣∣∣∣
ip1

≈ 1
L2d

(
4∑
j=1
NjUj − ûip

)
(23)

where Ld is given by the following di�usion length scale:

L2d =
(
2
�x2

+
8

3�y2

)−1
(24)

It can be veri�ed that this expression has the correct scaling properties of the Laplacian
operator, and the correct limiting behaviour for steady di�usion problems involving no source
terms.
Finally, local source terms can be evaluated by either direct substitution of the corresponding

integration point values, or interpolation of nodal values in a similar fashion as the construction
of the pressure gradient term. These operators are all assembled into Equations (17)–(18)
and expressed through in�uence coe�cient (IC) matrices. Then, a local matrix inversion is
required to express the four integration point values (per element) in terms of nodal values
alone. These inverted condensing coe�cient (CC) matrices are used to calculate the integration
point velocities, such as ûip in Equation (17), as follows:

{û}=(CCu)−1[ICuu]{U}+ (CCu)−1[ICup]{P}+ (CCu)−1{RSu} (25)

The right side source vector, {RS}, and the coe�cient matrices are

{RSupi }= �û
o
i

�t
(26)

[ICuu] =




�V1�(1−r)
Lc;1

+ �N1
L2d;1

�V1�(1−s)
Lc;1

+ �N2
L2d;1

�N3
L2d;1

�N4
L2d;1

�N1
L2d;2

�V2�(1−r)
Lc;2

+ �N2
L2d;2

�V2�(1−s)
Lc;2

+ �N3
L2d;2

�N4
L2d;2

�N1
L2d;3

�N2
L2d;3

�V3�(1−s)
Lc;3

+ �N3
L2d;3

�V3�(1−r)
Lc;3

+ �N4
L2d;3

�V4�(1−r)
Lc;4

+ �N1
L2d;4

�N2
L2d;4

�N3
L2d;4

�V4�(1−s)
Lc;4

+ �N4
L2d;4




(27)

[ICupi;j ] =− @Ni
@x

∣∣∣∣
j

(28)

[CCu] =
�
�t
I4 +




�V1
Lc;1
+ �

L2d;1

−�s�V1
Lc;1

0 −�r�V1
Lc;1

−�r�V2
Lc;2

�V2
Lc;2
+ �

L2d;2

−�s�V2
Lc;2

0

0 −�s�V3
Lc;3

�V3
Lc;3
+ �

L2d;3

−�r�V3
Lc;3

−�s�V3
Lc;3

0 −�r�V4
Lc;4

�V4
Lc;4
+ �

L2d;4




(29)
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Figure 3. Convective upwinding for near-wall force calculations.

The 4 × 4 identity matrix is denoted by I4. The numerical subscripts refer to the integration
point numbers. Analogous coe�cient matrices are obtained for the v̂ip velocity in Equation
(18).
In the previous equations, the coe�cients �, � and r are used to represent the type of skewed

upwinding. This upwinding involves interpolation of upstream values based on adjacent nodal
and integration point values in the appropriate sub-element. For example, consider an upstream
interpolation for ûip1 in SCV1 of Figure 1. Values of �=1; �=0 or �=0; �=1 represent two
directions, depending on a negative or positive dot product between the outward sub-surface
normal vector and local velocity, respectively. In our example when the upstream value of
ûip1 intersects the sub-element edge of SCV2, the former values are used. Then, interpolation
for the upstream value of ûip1 is taken between local node 2 and integration point 2 velocities,
based on the geometric weighting factor s (note: factor r for �ows in the opposite direction).
This example describes a single case, while the range of �, � and r (or s) values includes
other cases for di�erent �ow directions or interpolation variables. For example, the case of
�=0; �=1 represents �ow from right to left in Figure 1. These coe�cients are used to �nd
ûip in Equation (25), and similarly for v̂ip. Then, the convective terms in Equation (8) are
obtained, so that the full control volume equations can be assembled and solved.

3.3. Improved accuracy of pressure weighted upwinding

In this section, it will be shown that the pressure weighted upwinding can improve the order
of accuracy of the �ow induced force calculations, as compared with past upwinding schemes
such as UDS. Figure 3 illustrates an element along the wall, particularly focusing on the
surrounding nodes and showing which variables are used in each type of upwinding scheme.
It can be seen that PINS uses all nodal velocities and pressures within the element, whereas the
other methods use some combination of variables, but not including pressure. The following
order accuracy study will be presented, with reference to Figure 3 and a Taylor series analysis.
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In Figure 3, an example is considered with upwinding of ûip to an upstream location on
the surface joining local nodes 2 and 3. For this example and the no-slip boundary conditions
at the wall, Equation (10) becomes

�w =�
(
@N2
@x

U2 +
@N3
@x

U3

)
+ �

(
@N2
@y

V2 +
@N3
@y

V3

)
(30)

The uppercase U and V refer to nodal velocities, and should be distinguished from V , which
represents the total velocity magnitude in previous sections.
Using the chain rule of calculus to �nd the derivatives of the shape functions for Equation

(30), and substituting s= − 1 and t= − 1 at local node 4 on the wall,

�w =
�
4A
(atuU2 + (btu − atu)U3) +

�
4A
(atvV2 + (btv − atv)V3) (31)

where

atu = y3 − y4 (32)

btu = y3 − y2 (33)

atv = x4 − x3 (34)

btv = x2 − x3 (35)

and A refers to the area of the element (Jacobian of transformation between local=global
co-ordinates).
As mentioned earlier, the purpose of this section is to determine how the convective up-

winding a�ects the accuracy of the previous wall shear stress and resulting force calculations.
The steady state relationships will be established through a Taylor Series analysis of Equations
(17)–(18). Equation (17) may be written as

�V
(
@u
@m

)
+ 	u = 0 (36)

where 	u includes the pressure gradient and di�usion terms. Also, di�erentiation of the con-
vective term is written in the streamwise (m) direction. Using skew upwinding as described
in Equation (20),

�V ′
(u′ip − u′u

L

)
+ 	′u = 0 (37)

where the prime notation refers to approximate (numerical) values. A similar result is obtained
for the y-momentum equation.
For skewed upwinding from the integration point to sides 2–3, as indicated by Figure 3

and Equation (21), the result in Equation (37) can be written as

u′ip +
(
L
�V ′

)
	′u =

1
biu

{aiuU2 + (biu − aiu)U3} (38)
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Similarly for the y-momentum equation,

v′ip +
(
L
�V ′

)
	′v=

1
biv

{aivV2 + (biv − aiv)V3} (39)

Based on a similarity of the right sides of Equations (31), (38) and (39), the wall shear stress
and integration point velocities can be related.
The coe�cients aiu, aiv, biu and biv refer to the interpolation coe�cients, as discussed in

Equation (21). From their de�nitions, btv and biv have orders of magnitude approximately
equal to the side length, and it can be shown that

b2iu= b
2
tu + b

2
tv (40)

As a result, adding Equations (38) and (39) together, subtracting Equation (31), and then
considering the order of magnitudes of the resulting terms,

O

{
biuu′ip +

(
Lbiu
�V ′

)
	′u + bivv

′
ip +

(
Lbiv
�V ′

)
	′v

}
=O

{
4A�w
�

}
(41)

Considering the shear stress portion of the drag force, Df , and the corresponding integral
in Equation (11), its order of magnitude (per unit depth of surface) can be approximated as

O(Df )=O(�w sin(�)L) (42)

When this result is used in Equation (41), it can be shown that the order of accuracy of
the frictional drag, Df , and integration point velocities, u′ip and v

′
ip, become the same. When

divided by �V
′2A=2, the drag coe�cient, cd, is obtained. The area factor, A, in this calculation

refers to the total surface area, so it is independent of the mesh spacing.
Also, the 	′u and 	

′
v terms in Equation (37) include the approximated pressure gradients.

Once scaled and multiplied by the characteristic length scale, L, in Equation (41), the second
and fourth terms of that equation become proportional to the total pressure, p′. Both the
frictional drag, Df , and pressure drag portion, Dp, contribute to the total drag force, D, in
Equation (11). The accuracy of the predicted drag force and corresponding drag coe�cient,
cd, become equal to the order of accuracy of the integration point velocities, u′ip and v

′
ip.

For a conventional upwinding scheme such as UDS, a Taylor series expansion of u′ip along
the local streamline back to the upstream location, suggests that UDS and u′ip are �rst-order
accurate. This upstream location is determined at the intersection of the local streamline with
the edge of the element. As a result, the drag coe�cient becomes �rst-order, based on the
previous discussion regarding the convection modelling and force calculations. However, it
can be shown that PINS yields second-order accuracy in the integration point velocities (see
Appendix A), and based on the previous analysis, also second-order accuracy in the drag
coe�cient. Thus, it is considered that the pressure weighted upwinding in near-wall elements,
as described in Section 3.2, improves the order of accuracy of the predicted forces.

3.4. Special applicability to force predictions on iced surfaces

Although the previous near-wall upwinding method can be applied to force predictions for
any general shape of surface, it exhibits special applicability to iced surfaces. Numerical pre-
dictions of �ow and ice induced forces involve considerable di�culty due to the complex
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physical phenomena at the interfacial boundary, i.e. impinging droplets, phase change heat
transfer, �owing supercooled surface �lm, moving boundary, and so on. Due to the impor-
tance of near-wall convection in icing applications, and other applications involving many
simultaneous interfacial processes (such as spray deposition manufacturing or droplet breakup
on combustion chamber walls), highly accurate upwind methods are needed for the near-wall
force predictions.
Furthermore, past numerical methods have often needed time-consuming steps to overcome

the di�culties of predicting the interfacial processes. For example, re-meshing at each time
step entails considerable CPU cost, particularly when near-wall grid re�nement is needed for
the boundary layer predictions. Further examples involving aircraft icing are documented by
Cebeci and Chen [13], Hedde and Gu�ond [14], Shin et al. [15] and others. Recent advances
have sought alternatives for overcoming these di�culties of icing predictions. Naterer [23]
describes an Eulerian volume averaging approach, which precludes re-meshing at each time
step by identifying the ice boundary through the local phase volume fractions of liquid, ice and
air. The ice shape changes over time, without requiring re-meshing at the moving boundary
of the ice surface.
Eulerian volume averaging allows coarser elements with reduced CPU cost, when compared

against Lagrangian methods with tracking of individual droplet trajectories. But a single near-
wall re�nement of elements cannot be accommodated on the �xed grid, since the unknown
position of the ice interface moves over time. As a result, highly accurate alternatives to
conventional upwinding are needed to establish the pressure=velocity coupling at a sub-element
level, when predicting the forces on the iced surface. Unlike other past methods discussed in
the appendix, PINS provides such sub-element links between pressure and velocity.

4. EXPERIMENTAL VALIDATION OF PREDICTIVE MODEL

Experimental data was used for validation and veri�cation of the predicted results. The mea-
sured data was collected in a closed loop wind tunnel in the Department of Mechanical and
Industrial Engineering at the University of Manitoba. The air velocity ranged up to 36m=s in
the test section, whose dimensions are 0:53m× 0:76m, with a length of 1:83m. A traversing
mechanism was used in the wind tunnel with pressure probe measurements [25]. Aerodynamic
forces associated with �ow past various test pieces were obtained through measurements with
a strain gauge balance (see Figure 4). The test pieces in this study include cables (i.e. stranded
and smooth circular cylinders) under iced and uniced conditions. Actual iced cables were ob-
tained separately from outdoor freezing rain experiments [26]. Following those experiments,
plaster cast samples of the actual iced specimens were obtained, and then mounted and tested
in the wind tunnel. E�ects due to shrinkage of plaster casts from the iced samples, as well as
di�erences in surface texture characteristics between samples, were considered to be negligible.
The aerodynamic forces were measured with a six-component strain gauge balance, which

was connected to a transducer conditioner. Forces exerted by the �ow in the wind tunnel were
obtained from converted strain gauge signals, in conjunction with a digital voltmeter. Each
test piece was mounted in the wind tunnel with couplings to �x the cable samples tightly
between the test section walls. These couplings reduced any �ow induced vibrations or leaked
�ow around the edges of a test specimen. Each test piece was mounted vertically on the strain
gauge balance. The reference zero degree angle of attack was de�ned as the thickest point
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Figure 4. Experimental setup for validation of �ow induced force calculations.

of ice formation, facing directly into the upstream direction. Preliminary testing of prismatic
models with well known drag and lift coe�cients (i.e. smooth cylinder and square sections)
was performed for validation of the force measurements. Then, further testing of other iced
and uniced conductors was performed over a range of Reynolds numbers.
In these experimental studies, the sources of error included limitations in the voltmeter

accuracy itself. The electrical signals for the voltmeter of the strain gauge balance were mea-
sured within an accuracy of ±0:05 �V. The measurements of drag and lift forces were based
on strain gauge signals within an overall accuracy of approximately ±2 �V. The correspond-
ing accuracy in terms of force can be obtained through the appropriate conversion factors
between force units and voltage units (i.e. 59�V→ 4:45N drag, 61�V→ 4:45N lift). In terms
of the test pieces, their lengths and diameters were generally accurate to within about 0:2%
of their reported values. For example, their lengths were 53:3 cm ± 1:0 mm. The diameter
of the D-section (to be discussed in Section 5) was 6:3 cm ± 0:5 mm. Furthermore, in order
to minimize errors arising from air in�ltration through the mounting hole at the base of the
test section, an air tight enclosure was constructed around the strain gauge balance. Based on
measurements with and without the enclosure, it was observed that negligible errors occurred
due to in�ltration. Ranges of experimental uncertainties will be shown in upcoming �gures
in the following section.
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Figure 5. Flow con�gurations for (a) uniced, (b) D-shaped ice and (c) frontally iced cables.
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Figure 6. E�ects of Reynolds number on drag coe�cient (uniced cable).

5. RESULTS AND DISCUSSION

Results of predicted forces on uniced and iced cables will be presented in this section. The
di�erent types of cables, as well as sample mesh discretizations for each type of �ow con-
�guration, are shown in Figure 5. In Figures 5a and 6, �uid �ow past an uniced cylindrical
conductor is considered. In this example, the conductor diameter, D, is 3:43 cm, and the in-
coming air velocity, V , is 4:7 m=s. Several di�erent mesh con�gurations were investigated,
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Figure 7. Grid re�nement study (uniced cable).

including a 2193 node mesh (used for Figure 6), and grid re�nement studies with 1921 nodes,
2193 nodes and other grids. The mesh spacing was re�ned within the boundary layer region
of each mesh. The simulations involving this particular cable diameter correspond to a range
of Reynolds numbers, Re (where Re=VD=�), between about 104 and 2:2 × 104. Along the
cable surface, the boundary layer thickness increases in the streamwise direction, with a favor-
able (negative) pressure gradient along the upstream side of the cylinder. As the �ow passes
around the front edge to the downstream side, it experiences an adverse (positive) pressure
gradient that leads to a swirling wake behind the cylinder. These processes a�ect the wall
shear stress and pressure distributions, thereby in�uencing the aerodynamic forces exerted on
the cylinder.
A comparison between the predicted results, experimental data and Fage and Warsap [27],

presented by Schlichting [28, Figure 21.18] is shown in Figure 6. Periodic shedding of vor-
tices renders the problem inherently unsteady, with slight temporal oscillations of cd about
a mean value. Instantaneous values of the drag coe�cient are predicted once the numerical
solution has converged, while the measured cd values are averaged to �nd the time invariant
average. The range of experimental uncertainty, based on measured and Schlichting’s data,
was considered to be about ±10%. In the speci�ed range of Reynolds number in Figure 6, the
drag coe�cient is nearly constant. In the numerical simulations, the surface of the cylinder
was approximated by an 8-sided polygon. Although the curvature of the cylinder is not fully
captured by an octagonal shape in the upcoming grid convergence studies, the results will be
shown to converge to the proper range of measured data. As discussed earlier, the drag force
is considered to be dominated by pressure drag, which largely involves �ow separation on
the downstream side of the cylinder. Since this entails base drag over the base area, it is not
highly sensitive to the curvature of the surface. Furthermore, previous studies by Zhang [29]
have con�rmed that close agreement is reached between aerodynamic force coe�cients, when
comparing the �ow past a circular cylinder and an octagon.
Grid re�nement studies are shown in Figure 7. The horizontal axis refers to the logarithm

of a non-dimensional grid spacing ratio along the outlet boundary. The grid spacing, dn, is
non-dimensionalized with respect to the domain height. In order to properly compare trends
for uniced (Figure 5(a)) and iced cables (Figure 5(b)), a reference grid spacing, dn0, is used
so each curve starts at the same initial point. A similar translation factor, e0, is used in the
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vertical axis, without a�ecting the main parameter of interest, namely the slope of each curve.
The vertical axis shows the logarithm of the predicted drag coe�cient error, as compared with
measured data for the case of Re=104. Plotting the results in a log–log form in Figure 7 is
useful since the resulting slope can indicate the order accuracy of the numerical formulation.
For the computed results in Figure 7, it can be observed that the logarithm of the solution
error decreases with a slope of about 2 for the coarse grid re�nement region in the upper right
(i.e. approximately second-order accuracy). Second-order accuracy suggests that a reduction
in grid spacing by a factor of 2, based on a characteristic dimension of importance, yields
a reduction of solution error by a factor of about 4. A steeper slope reduction is observed
for the �ner grid region in the lower left. When the absolute errors lie within the range of
experimental errors (described in previous section), this type of grid study may not be entirely
conclusive with regards to detailed order accuracy. Also, even though convective upwinding
is a major part of the model, it alone does not specify the order accuracy of the overall
formulation. Nevertheless, it can be observed that the predicted error appears to be reduced
when the grid spacing is smaller, and this reduction appears to be faster than �rst-order, when
pressure weighted upwinding is used.
As discussed earlier, the �ow past uniced and iced circular conductors is inherently un-

steady, since vortices are shed periodically from the conductor. As a result, the value of the
drag coe�cient oscillates about a certain mean value. A regular oscillating pattern is typically
established due to periodic vortex shedding behind a blu� body. In this article, the time av-
eraged drag coe�cients are reported in the measured data. More speci�cally, measurements
were gathered by taking 10 values during the period of regular oscillations, and then arith-
metically averaging them to determine the time invariant average. These measured values are
compared against instantaneous computed drag coe�cients, which vary by less than about
±2% from the time averaged value (i.e. cylinder in cross�ow; [30]). Furthermore, such com-
puted oscillations about the time invariant average generally remain well below the range of
experimental uncertainty discussed earlier (±10%).
The time varying drag and lift coe�cients are computed with �rst order temporal accuracy in

Equation (7), unlike second order spatial accuracy (see Appendix A). However, this temporal
order of accuracy is not considered to appreciably a�ect the time invariant averages or range
of oscillations about the mean value, once the pattern of regular oscillations is established.
Those features are characterized by the spatial variations of velocity and pressure throughout
the �ow �eld. The mean value becomes time independent, provided that a su�cient number of
points is taken for the average and the remaining �ow �eld has converged numerically. Second
order temporal accuracy in the CVFEM can be established with a Crank–Nicolson scheme
[22]. The higher temporal accuracy comes at the expense of certain disadvantages, such as
storing property values at an intermediate time level, and storing values of the global sti�ness
matrix at the previous time level. Furthermore, once a regular oscillating pattern is established
in the blu� body �ow, predicting the time invariant average and range of oscillation about
this average becomes more signi�cant than a speci�c stage of vortex shedding in time.
A D-shaped cable (Figure 5(b)) can arise under a variety of atmospheric conditions with

freezing precipitation and icing of cylindrical conductors. In conjunction with conductor ro-
tation and a steady side wind, this shape can lead to unstable oscillations (galloping) of
overhead power lines at certain angles of attack. Those cases would involve an incoming air
stream at some angle with respect to the horizontal plane (see Figure 5(b)). When predicting
the �uid–structure interactions leading to galloping, the �ow-induced forces are needed. For
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Figure 8. Predicted coe�cients for D-shaped and frontally iced cables.

the D-shaped cable simulations (Figures 7, 8), the incoming air velocity is 15:2 m=s. The
diameter at the midplane of the D-shaped cable is 6:3 cm. Various grid con�gurations were
studied, including grids with 1649 nodes, 1921 nodes and others. These nodes were located
essentially uniformly in the radial direction (outwards away from body), and the azimuthal
direction (around the body). In this article, a stationary ice=air interface with a �xed grid
is considered, so re-meshing at each time step due to impinging solidi�ed droplets at the
advancing ice interface is not performed. Even with a moving ice=air interface, this �xed grid
approach can be used successfully [23].
The current formulation described in Section 3.2 exhibits certain advantages for handling

the boundary conditions and sharp corners along the D-shaped surface. For example, the
simultaneous pressure–velocity coupling within the near-wall elements e�ectively provides a
sub-element re�nement. Unlike other non-pressure based upwinding schemes (such as UDS,
EDS, QUICK; see Appendix A), the current method links pressure with convective velocities
at the four integration points within the near-wall element. This prevents any non-physical
de-coupling between pressure and velocity therein, which would adversely a�ect the resulting
force calculations. A higher �ow resistance of the �at front edge of the body is encountered,
when compared to the uniced cylinder. This �at edge leads to higher aerodynamic forces on
the cable, and an upward lift force. Such forces are particularly evident at non-zero angles of
attack, due to asymmetry in the direction normal to the incoming �ow direction.
In Figure 7, the predicted results for the D-shaped cable approach the measured value of

2.61 when the grid spacing, dn, is re�ned. The grid spacing from the coarsest to �nest mesh
is reduced from 78 to 20mm (outside of the boundary layer) in the horizontal direction along
the horizontal midplane of the mesh. For the D-shaped cable, the computed drag coe�cients
generally oscillated between ±6% of the measured value, possibly due to periodic shedding
of vortices behind the D-shaped body. A similar phenomenon was also observed in the mea-
sured data, whereby arithmetic averaging of several measurements was required to obtain a
representative stationary value of the aerodynamic force.
When other results of drag coe�cient for uniced and iced conductors were compared, the

e�ects of D-shaped icing could be observed. As described earlier, the D-shape can occur due
to conductor twisting with a steady side wind carrying droplets in icing conditions. Although
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the drag coe�cient for the uniced cylinder, cd; u, remains nearly constant in Figure 6 at all
angles of attack (due to self-symmetry), this coe�cient varied with angle under D-shaped icing
(coe�cient denoted by cd;d). At angles below about 40◦, cd;d exceeds cd; u due to the larger
blu� area exposed to the incoming airstream, as compared with the uniced cable. However,
beyond those angles up to about 120◦, an opposite trend (cd;d¡cd; u) was observed. This trend
is expected when the cross-stream width of the downstream separation zone is smaller, thereby
creating a smaller low pressure wake behind the cable. Beyond about 120◦, cd;d approaches
cd; u since the shape exposed to the incoming airstream approaches the uniced cable shape.
This suggested that the �ow induced forces appear to be more a�ected by the ice-altered
shapes on the upstream side, rather than the downstream side of the cable.
Another commonly encountered ice shape is illustrated in Figure 5(c), which occurs with

an external �ow past a cable with ice accretion into the direction of the incoming wind.
The shape depicted in Figure 5(c) closely resembles iced cables documented by Poots [31].
Little or no ice accumulation on the downstream side of the cable indicates that the ice
formation is likely rime (dry) ice. During rime ice buildup, impinging supercooled droplets
freeze immediately upon impact on the upstream side, without runback of unfrozen water to
the back side. Due to the elongation in the �ow direction, together with asymmetry arising
at non-zero angles of attack, considerable lift forces can be generated for these iced cables.
Varying angles of attack can arise from twisting of the cable under its own weight, after the
period of freezing precipitation.
In Figure 5(c), the accreted ice mass on the upstream side of the conductor, approximated

by a series of line segments, represents the ice layers accumulated on the cylinder after a
certain period of time. In this example, the incoming velocity is 27:9m=s and the initially bare
(uniced) cable diameter is 2.26 cm. A spatial discretization of 2193 nodes (2048 elements) was
used with mesh re�nement in the boundary layer. This particular discretization was determined
to be an adequate mesh re�nement, in view of the earlier grid sensitivity studies. By placing
the body at di�erent angles within the mesh, the e�ects of the angle of attack on the lift and
drag forces could be investigated.
Figure 8 summarizes results for di�erent iced and uniced con�gurations, including the

previous frontally iced cable. The horizontal axis indicates the asymmetry, whereby the Frontal
Symmetry Ratio, R, refers to the ratio of the radial body thicknesses at 0◦ and 45◦. An uniced
cylinder is completely symmetrical, with R=1, while the D-shaped cable is least symmetrical
about the axis of the incoming �ow, and R=0:71. On the vertical axis, the ratio between the
computed and measured values of the aerodynamic coe�cient is shown. For both cd and cl
results, the predictions agree reasonably well with experimental data, when considering the
range of experimental uncertainty of such data. The purpose of Figure 8 is to verify that the
pressure weighted upwinding can be applied successfully to various geometrical con�gurations
of iced cables. Due to complete symmetry of the uniced cylinder, the averaged lift coe�cient
is zero. However, this lift coe�cient oscillates (positive and negative) over time about zero
due to periodic shedding of vortices from the top and bottom (back) sides of the cable. As
discussed earlier, it is the time averaged aerodynamic coe�cients that are shown. Due to the
symmetry, �ow induced forces on uniced cables do not exhibit a dependence on the angle
of attack, whereas frontal ice is asymmetric at di�erent angles of attack, so angle-dependent
variations occur.
A blu� body immersed in a �uid stream, such as air �owing past a circular conductor, is

considered to be dynamically stable if its yawing motion due to the �ow induced vibration is
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damped out with time. In this case, the conductor’s position tends to point into the general
direction of the initial angle of attack. An overhead power line can be dynamically stable
during early stages of ice buildup, but lose dynamical stability if the ice formation produces
a certain shape, as the �ow�eld around the iced cable changes with time. The accumulated
ice shape leads to time varying changes of drag and lift forces on the power lines, which
can induce unstable line oscillations. Yu et al. [20, 32, 33] have presented three degrees-of-
freedom modelling of such oscillations (galloping). Galloping is a high amplitude periodic
oscillation arising from dynamic instability, which is caused by a steady crosswind acting
on asymmetric iced cables. Such asymmetry generally appears when atmospheric conditions
lead to ice buildup preferentially on the side of the cable facing the incoming wind and pre-
cipitation. Galloping represents dynamically unstable vibrations, which can lead to net forces
much larger than forces on the cable arising from the ice weight alone. Actual frequencies of
galloping usually vary between 0.15 and 1:0 Hz, depending on the oscillation mode excited.
The amplitudes generally range between ±0:1 and ±1:0 times the sag of the span. Similarly,
under certain atmospheric conditions with freezing precipitation, the onset of galloping can
arise for D-shaped iced cables certain angles of attack [20, 32, 33].
Criteria for establishing the dynamical stability depend on the drag and lift coe�cients,

as well as their derivatives. For example, the Den Hartog condition for dynamical instability
involves the derivative of lift coe�cient with respect to angle relative to the incoming air�ow
[34]. This condition predicts a vertical instability of a power line, provided that the slope of the
lift curve is positive (with an anti-clockwise positive reference) and its magnitude exceeds the
drag coe�cient. As a result, highly accurate methods are needed for calculating such slopes to
determine the dynamical stability. Convection modelling and near-wall predictions of pressure
and velocity are important components needed to achieve such accuracy. This article has
described a pressure-weighted method of convective upwinding, which yields higher order
accuracy than other past upwind methods (see Appendix). Furthermore, the sub-element link
between pressure and velocity could prevent non-physical decouplings between these variables
near the wall, as they may occur with sudden �ow variations at di�erent angles of attack.
Variations of drag and lift forces with angle of attack are needed in the dynamical stability
analysis, so these aspects of the convection modelling are considered to be important ways
of accurately predicting the onset of instabilities such as galloping.
Other comparisons have been studied with stranded cables, smooth cylinders and octagonal

cross-sections, in order to determine their e�ects on �ow patterns and ice formation [25, 29]. It
was observed that the e�ects of stranding and piecewise linear approximations of the circular
conductor (i.e. octagon used in numerical simulations) were minor, provided that at least eight
sides, or strands, are used to approximate the circular boundary. As a result, it is anticipated
that the current numerical results can provide reasonable predictions of actual physical trends
that would be encountered during icing of overhead power lines.

6. CONCLUSIONS

Convection modelling with pressure based upwinding is presented for predictions of �ow
induced forces on iced surfaces. A sub-element link between pressure and velocity is used
for higher order accuracy, when calculating the near-wall shear stress and pressure distribu-
tions. Unlike other past methods of upwinding, the current method uses a pressure weighting
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which can preclude a possible de-coupling between variables due to the pressure checker-
board problem. The numerical analysis is performed with a CVFEM (control-volume-based
�nite element method) for 2-D incompressible �ows. Drag and lift coe�cients are predicted
for iced and uniced cables. Numerical results are successfully compared against experimental
data collected in a closed loop wind tunnel with iced cable specimens.

APPENDIX A: ORDER ACCURACY COMPARISON OF DIFFERENT
UPWIND SCHEMES

This appendix describes a baseline against which the current upwinding method (called PINS)
can be compared. This baseline refers to the spatial order of accuracy of PINS, particularly
when representing the integration point variable in terms of nodal values in the convective
�uxes. It will be compared against other commonly used upwind schemes, namely UDS and
EDS [3], as well as QUICK [11], in terms of order of accuracy and other features. These
comparisons will be made for a common series of meshes, whereby the grid spacing of each
mesh and the sequence of grid re�nement are identical for each method. In this way, only the
leading term of the Taylor series truncation analysis will be needed to compare each method’s
order of accuracy against the baseline method (PINS). Spatial interpolation with isoparametric,
quadrilateral �nite elements is used in the �nite element procedure, independently of the type
of convective upwinding. In the following analysis, a prime notation (′) will designate an
inexact numerical value, while variables without this prime refer to exact values.
Consider that the local streamline intersects the volume edge between local nodes 2 and 3

(see Figure 1). Then, interpolation of the x-velocity component is performed between U2 and
U3 when approximating the upwind value, u′u, along that edge, i.e.

u′u =
(a
b

)
U2 +

(
1− a

b

)
U3 (A1)

The parameter a refers to the distance between the upwind point and node 3 along edge 2–3,
while b refers to the distance between nodes 2 and 3.
Performing a Taylor series expansion of nodal velocities about the upwind point along edge

2–3 (denoted by the normal direction, n),

U2 = uu + (b− a)
(
@u
@n

)
+
1
2
(b− a)2

(
@2u
@n2

)
+ O[(b− a)3] (A2)

U3 = uu − a
(
@u
@n

)
+
1
2
a2
(
@2u
@n2

)
+ O(a3) (A3)

Combining Equations (A1)–(A3),

u′u = uu + O(b2) (A4)

Thus, the approximated upwind velocity, u′u, can be expressed in terms of the exact upwind
velocity, uu, plus a second-order correction term.
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Each integration point velocity obeys the transport form of momentum equation outlined in
Equation (36), i.e.

�V
(
@u
@m

)
+ 	u = 0 (A5)

where m refers to the streamwise direction and 	u includes the pressure gradient, 	u;p, and
di�usion terms, 	u;u. For the x-momentum equation,

	u =	u;p + 	u;u =
@p
@x

− �
(
@2u
@x2

+
@2u
@y2

)
(A6)

The following upwind schemes (PINS, UDS, EDS and QUICK) will be compared against
each other, particularly regarding their accuracy in representing the actual transport processes
outlined in Equation (A5).

A.1. PINS (physical in�uence scheme)

In this approach, the upwind velocity is determined after discretizing Equation (A4) in terms
of the integration point velocity, uip, as follows:

�V ′
(u′ip − u′u

L

)
+ 	′u = 0 (A7)

A similar result is obtained for the y-momentum equation.
Re-arranging Equation (A7) and then substituting Equation (A4),

u′ip = uu −
	′uL
�V ′ + O(b2) (A8)

Assuming that the terms 	′u and V
′ are at least �rst-order accurate, then the third term can

be expanded in terms of exact values as follows:

L(	u + O(L))
�(V + O(L))

=
L	u
�V

+
O(L2)

�V + �O(L)
− L	uO(L)
V (�V + �O(L))

(A9)

If the velocity, V , is further expressed in terms of the length scale, L, divided by a charac-
teristic time scale, T , it can be shown that the �rst term on the right side becomes dominant
when the grid spacing is reduced. In that case, Equation (A8) becomes

u′ip = uu −
	uL
�V

+ O(b2) (A10)

Applying a Taylor series expansion for the upwind velocity in the streamwise direction,

uu = uip − L
(
@u
@m

)
ip
+
L2

2

(
@2u
@m2

)
ip
+ O(L3) (A11)

Thus, comparing with Equation (A5),

uip = uu − L	u
�V

+ O(L2) (A12)
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Comparing this exact value of the integration point velocity with the approximated value in
Equation (A10),

u′ip = uip + O(b2) + O(L2) (A13)

Thus, upwinding based on PINS yields second-order accuracy of the integration point velocity,
when calculating the convective �uxes at the edge of each control volume.

A.2. UDS (upwind di�erencing scheme)

In this method, pressure, di�usion and source terms are neglected, so Equation (A5) is ap-
proximated as follows:

�V ′
(u′ip − u′u

L

)
=0 (A14)

and similarly for the y-momentum equation. After re-arranging Equation (A14), it can be
observed that the integration point velocity is approximated directly by the upwind velocity.
However, from Equation (A11),

uu = uip + O(L) (A15)

which suggests that this approximation of the integration point velocity is �rst-order accurate.
Thus, in addition to exhibiting a lower order accuracy than PINS, the velocity becomes

de-coupled from pressure at the integration point in UDS. Such de-couplings may permit
unrealistic local variations of velocity and pressure. For example, a large sub-element pressure
gradient could arise around a sharp corner on the ice surface, without having any e�ect on
the integration point velocity in Equation (A14), thereby destabilizing the computations. As
a result, lower order accuracy and certain concerns regarding numerical stability are observed
in UDS, when compared against PINS.

A.3. EDS (exponential di�erencing scheme)

Unlike UDS, this approach attempts to balance upstream and downstream nodal in�uences on
the integration point velocity, based on the local grid Peclet number (Pe=�Ui�xi=�, where
� is the di�usion coe�cient). Similarly as PINS, Equation (A5) is solved locally for the
integration point velocity. But in contrast to PINS, 	u includes only di�usion terms, 	u;u, and
not the implicitly linked pressure �eld outlined in PINS, 	u;p, i.e.

	u =	u;u = − �
(
@2u
@x2

+
@2u
@y2

)
(A16)

For illustration purposes, consider a 1-D analytical solution of Equation (A5), while ne-
glecting pressure and source terms in 	u, but including the di�usion component. For incom-
pressible, viscous �ow of a Newtonian �uid, this di�usion component in the x-momentum
equation becomes the Laplacian of uip. The west node, integration point and east node are
designated by subscripts W , ip and E, respectively. Solving Equation (A5) subject to known
(speci�ed) values of U at the nodes, and then evaluating the velocity at the integration point
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based on this solution,

uip =
(
1 + 

2

)
UW +

(
1− 

2

)
UE (A17)

where


=1− 2(ePe=2 − 1)
ePe − 1 (A18)

This approach allows the upwinded velocity to accommodate the proper upstream and down-
stream in�uences of adjacent nodal velocities. For example, the weighting on the upstream
value increases when Pe increases (as expected).
Then, in terms of order accuracy, Equation (A8) becomes

u′ip = uu −
	′u;uL
�V ′ + O(b2) (A19)

and the exact value in Equation (A12) becomes

uip = uu − L(	u;p + 	u;u)
�V

+ O(L2) (A20)

As a result, comparing Equations (A19)–(A20),

u′ip = uip +
L	u;p
�V

+ O(b2) + O(L2) (A21)

When Equation (A21) is compared against the analogous result in Equation (A13), it can be
observed that the accuracy of the integration point variable in EDS becomes dependent on an
additional pressure gradient term, 	u;p. Based on the characteristic time and length introduced
before Equation (A10), and the �rst order accuracy assumption leading to Equation (A9), the
additional pressure term leads to �rst order accuracy in Equation (A21). Also, the method
of EDS usually requires additional approximations to reduce the computational expense of
calculating the exponential terms in Equation (A18) for the weighting factor, 
 (Minkowycz
et al., 1988).

A.4. QUICK (Quadratic upstream interpolation for convection kinetics)

A quadratic function is used for interpolation of integration point values in this approach,
but the 	u term in Equation (A5) is neglected, similarly as UDS and EDS. Although higher
order accuracy is achieved with this quadratic upstream interpolation, an analogous result of
Equation (A21) is obtained. In this result, the pressure and di�usion terms yield �rst order
accuracy when the upwind method is compared against the actual transport processes at the
integration point. These actual processes require a momentum balance involving convection,
pressure and di�usion terms, which cannot be fully realized with a conventional Taylor series
analysis based on a single dependent variable, without the sub-element link between the
integration point velocity and pressure.
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APPENDIX B: NOMENCLATURE

a, b interpolation coe�cients
A area
cd drag coe�cient
cl lift coe�cient
D drag force
D diameter
L length scale
L lift force
m streamwise direction
Ni bilinear shape function
p kinematic pressure
Pi nodal pressure (local node i)
S source term
s local co-ordinate
t time
Ui nodal x-velocity (local node i)
V total velocity magnitude
Vi nodal y-velocity (local node i)
u; v x, y-velocity components
x; y global co-ordinates

Greek letters

	 pressure, di�usion terms
� dynamic viscosity
� general scalar variable
� density
� shear stress
� upwinding coe�cient
� upwinding coe�cient

Subscripts

c convection
d di�usion
i node i
ip integration point
u upwind
w wall
x; y co-ordinate directions

Superscripts

n+ 1 current time level
u x-momentum equation
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v y-momentum equation
p continuity equation
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